Building Source-to-Source Tools for High-Performance Computing

June. 25th, 2020

C3PO'20: Compiler-assisted Correctness Checking and Performance Optimization for HPC

LLNL-PRES-811505 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

CASC

Center for Applied Scientific Computing

Agenda

- Background
- Tools
 - Inliner
 - Outliner
 - The Move Tool
- Supportive work
 - Benchmarking
 - Tools as Services
 - FreeCompilerCamp
- Conclusion

Compilers: traditional vs. source-to-source

ROSE: Enabling Compilers-based Tools for Critical Applications

Tools Built Using ROSE

- Analyzers: understanding, correctness, ...
 - Visualization tools
 - Arithmetic Intensity measuring tool
 - NULL pointer analyzer
 - Data race detection tool

Automatically-Generated Machine Chart for multithreaded firmware with 110K SLOC

Tools Built Using ROSE (Cont.)

- **Translators**: Optimization, modernization, \bullet refactoring, patching ...
 - The AST Inliner
 - The AST Outliner
 - OpenMP Lowering for CPUs/GPUs
 - AutoPar ullet
 - Loop Processor •
 - Declaration move tool •
 - Code patching tool

Char destination[5]; char *source = "LARGER";

strcpy(destination, source);

Potential reboot

strncpy(destination, source, sizeof(destination));

strlcpy(destination, source, sizeof(destination));

R G А \0 Image: developer.apple.com

Safe

Identifies unsafe functions and creates patches e.g. detect and repair unsafe strcpy

The AST Inliner for C/C++

- Inlining: replacing a function call with the function body of the called function
 - C++: template functions, some with specialization
 - C++11: lambda expressions (anonymous functions)
- Benefits:
 - Traditional: eliminating overhead of function calls, enabling analysis and optimization which otherwise only work on single functions
 - Source-level C++ inlining: facilitating program understanding, enabling optimizations

RAJA: C++ Abstractions Enabling Portable HPC Applications

RAJA	
 namespace RAJA { // Template function template < typename EXE_POLICY_T, typename LOOP_BODY > void forall (int begin, int end, LOOP_BODY loop_body) { forall (EXE_POLICY_T (), begin, end, loop_body); } // A sequential execution policy type 	 Separating four core elements of loop execution 1. Execution template: RAJA::forall 2. Execution policy: RAJA::seq_exec 3. Iteration space: RAJA::RangeSegment 4. Loop body: lambda expressions
<pre>10. struct seq_exec {}; 11. // Template specialization for sequential execution 12. template < typename LOOP_BODY > 13. void forall (seq_exec, int begin, int end, LOOP_BODY loop_body) 14. { 15. #pragma novector 16. for (int ii = begin; ii < end; ++ ii) { 17. loop_body (ii); 18. } 19. }}</pre>	 using EXEC_POLICY = RAJA::seq_exec; RAJA::RangeSegment range(0, N); RAJA::forall< EXEC_POLICY >(range, [=] (int i) 4. { 5. a[i] += c * b[i]; 6. });

Inlining C++ template functions with lambda expressions

RAJA	Code Using RAJA	After Inlining*
<pre>1. namespace RAJA 2. { 3. // Template function 4. template < typename EXE_POLICY_T, typename LOOP_BODY > 5. void forall (int begin, int end, LOOP_BODY loop_body) 6. { 7. forall (EXE_POLICY_T (), begin, end, loop_body); 8. } 9. // A sequential execution policy type 10. struct seq_exec { } ; 11. // Template specialization for sequential execution 12. template < typename LOOP_BODY > 13. void forall (seq_exec, int begin, int end, LOOP_BODY loop_body) 14. { 15. #pragma novector 16. for (int ii = begin; ii < end; ++ ii) { 17. loop_body (ii); 18. } 19. }}</pre>	 void foo() { const int n=100; double *a = new double [100]; RAJA::forall< class RAJA::seq_exec > (0, n, [=] (int i) { a[i] = 0.5; }); } 	 void foo () { const int n=100; double *a = new double [100]; #pragma novector for (int ii = 0; ii < 15; ++ii) { a[ii] = 0.5; }

* Working in progress

Inliner Algorithm

- 1. Eligibility check:
 - a) Only allow named function, static member function, nonvirtual member function, with known function body
- 2. Promoting function call expressions:
 - a) e.g. $a = func1() + b; \rightarrow auto temp = func1(); a = temp + b;$
- 3. Copy the body of the function to be inlined
 - a) Create local variables for each formal argument, initialized with the actual argument
 - b) Replace variable references with actual arguments
 - c) Insert a label to indicate the end of the function body
 - d) Convert return x to a code block
 - 1. E.g.: return x ; \rightarrow {x; goto func_end;}
- 4. Postprocessing: cleanup the inlined code
 - a) Remove unused labels,
 - b) Remove goto to immediate next statement

The AST Outliner: Effective source-to-source Outlining

Outlining: semantically the reverse transformation of inlining

Used for kernel generation, OpenMP lowering for CPUs and GPUs, autotuning of whole programs

The AST Outliner: Algorithm and User Interface

- Perform side-effect and liveness analysis
- Bottom up traverse the AST and process each outlining target
 - Check the eligibility of a target
 - Create an outlined function
 - Create a function skeleton with parameters
 - Handle function parameters: decide pass by value vs. reference
 - Move the target into the outlined function's body
 - Replace variable references: variable cloning to avoid pointer uses
 - Replace the target with a call to the outlined function

Usage: outline [OPTION]... FILENAME... Main operation mode: -rose:outline:preproc-only -rose:outline:abstract_handle handle_string -rose:outline:parameter_wrapper -rose:outline:structure_wrapper -rose:outline:enable_classic -rose:outline:temp_variable -rose:outline:enable_liveness -rose:outline:new_file -rose:outline:output_path -rose:outline:exclude_headers -rose:outline:use_dlopen -rose:outline:enable_debug

outline -rose:outline:abstract_handle "ForStatement<position,12>" -rose:outline:use_dlopen test3.cpp // outline the for loop located at line 12 of test3.cpp, call it using dlopen

Parameter Handling & Reducing Pointer Dereferences

- Scope and linkage
 - C: global only
 - C++: global vs. class-scope , C-linkage
- Parameters: for control and data
 - Goal: a few parameters as possible
 - Rely on scope, side effect and liveness analysis

- Variables pass-by-reference handled by classic algorithms: pointer dereferences
- We use a novel method: variable cloning
 - Check if such a variable is used by address: address-taken analysis
 - C: &x;
 - C++: T & y=x; or foo(x) when foo(T&)
 - Use a clone variable if x is NOT used by address and is assignable

Parameters = ((AllVars – InnerVars – GlobalVars – NamespaceVars –ClassVars) ∩ (LiveInVars U LiveOutVars)) U ClassPointers

PassByRefParameters = Parameters ∩ ((ModifiedVars ∩ LiveOutVars) U ArrayVars U ClassVars) CloneCandidates = PassByRefParameters ∩ PointerDereferencedVars CloneVars = (CloneCandidates – UseByAddressVars) ∩ AssignableVars

CloneVarsToInit = CloneVars ∩ LiveInVars

CloneVarsToSave = CloneVars ∩ LiveOutVars

Pointer-Dereferencing vs. Variable Cloning

Classic algorithm with pointer-dereferencing	Outlining with variable cloning
<pre>void OUT14027(int *ip, int *jp, double omega, double *errorp, double *residp, double ax, double ay, double b) {</pre>	<pre>void OUT_1_5058_(double omega,double *errorp, double ax, double ay, double b) {</pre>
	<pre>int i, j; /* neither live-in nor live-out*/ double resid ; /* neither live-in nor live-out */ double error ; /* clone for a live-in and live-out parameter */</pre>
// Four variables becomes pointers: i,j, resid, error	error = *errorp; /* Initialize the clone*/
for (*ip=1;*ip<(n-1);(*ip)++)	for (i = 1; i < (n - 1); i++)
for (*jp=1;*jp<(m-1);(*jp)++)	for (j = 1; j < (m - 1); j++) {
{	resid = (ax * (uold[i - 1][j] + uold[i + 1][j]) +
*residp = (ax * (uold[*ip1][*jp] + uold[*ip+1][*jp]) +	ay * (uold[i][j - 1] + uold[i][j + 1]) +
ay * (uold[*ip][*jp1] + uold[*ip][*jp+1]) +	b * uold[i][j] - t[i][j]) / b;
b * uold[*ip][*jp_] - f[*ip][*jp])/b;	u[i][j] = uold[i][j] - omega * resid;
u[*ip][*jp] = uold[*ip][*jp] - omega * (*residp);	error = error + resid * resid;
<pre>*errorp = *errorp + (*residp) * (*residp);</pre>	}
}	
}	*errorp = error; /* Save value of the clone*/

}

The Outliner Used for Whole Program Autotuning

The Move Tool: a Code Refactoring Tool to Move Variable Declarations into Innermost Scopes

- A source-to-source refactoring tool to support ASC application teams
 - Copy-move variable declarations into innermost scopes: variable privatization
 - Benefits: facilitate code parallelization (migrating to OpenMP/RAJA)
- Algorithm went through 3 versions
 - V1: Naïve single-round move
 - V2: Iterative move using a declaration worklist
 - V3: Separated analysis and movement: much more efficient

Case 1: Single Used Scope vs. Case 2: Multiple Used Scopes

Case 3: Multiple Used Scope Branches of the Same Length

Case 4: Multiple Branches with Different Lengths

Algorithm V2: iteratively move declarations

- A declaration copy-moved to a new location
 - the newly inserted declaration should be considered for further movements
 - Focus on declarations
- An iterative algorithm using a worklist
 - initial worklist = original declarations in the function
 - while (!worklist.empty())
 - decl = worklist.front(); worklist.pop();
 - moveDeclarationToInnermostScope(decl, inserted_decls);
 - worklist.push_back(each of inserted_decls)

Only Need to Find Final Scopes and Move Once: Algorithm V3

- Find final scopes first
 - scope_tree_worklist.push(scope_tree);
 - while (!scope_tree_worklist.empty())
 - current_scope_tree = scope_tree_worklist.front(); ...
 - collectCandidateTargetScopes(decl, current_scope_tree);
 - if (is a bottom scope?)
 - target_scopes.push_back(candidate)
 - else
 - scope_tree_worklist.push_back(candiate)
- Then copy&move in one shot
 - if (target_scopes.size()>0)
 - copyMoveVariableDeclaration(decl, target_scopes);

- 230+ regression tests, with correctness verification (diff-based)
- Applied to large-scale X,Y apps, very positive user feedback
- Users kept requesting more features once previous requests were met
 - merge moved declarations with immediately followed assignments
 - transformation tracking, debugging support
 - aggressive mode, keep-going mode, no-op mode, …

Success(HPC) = f(FLOPs, Watt)

HPC = Highly Painful Computing

Sacrificing hours of hard human cycles for a few reduced machine cycles

Would some application teams really want to use the HPC software/hardware systems we dump on them every 3-5 years, if they had choices??

A New Holistic Success Metric for HPC as a Service

Success(HPC) =

f (Total_time, Quality_of_results, Total_cost, Context)

Total_time = the entire end-to-end, machine-human interaction time to get results

 Human_time = training, thinking_steps, keystrokes, mouse_clicks, cursor_travel_distance, hairs_pulled_off, ...

Quality_of_results:

- Correctness, accuracy, certainty/confidence, up-to-date ...
- Total_cost = Machine_cost + Human_cost
 - Human cost tied to hourly rates: make HPC operable/usable by even cavemen
- Context: under which conditions can HPC serve users (including cavemen)?
 - Access devices (smartphones), Locations (AOE), Time (24x7), ...

Benchmarking to Understand Quality of Tools

If You Can't Measure it Correctly, You Can't Improve it

Regression positive/negative tests

Metric	Formula
Precision	Confidence of true positive P = TP/(TP + FP)
Recall	Completeness of true positive R = TP/(TP + FN)
Accuracy	Chance of having a correct report A = (TP +TN)/(TP + FP +TN + FN)

1.		
2.	int i,x;	
3.	#pragma omp parallel for	
4.	for (i=0;i<100;i++)	one data race pair
5.	{ <mark>x</mark> =i; }	x@5 vs. x@5
6.	printf("x=%d",x);	
7.		

lastprivatemissing-orig-yes.c

1.	
2.	int i,x;
3.	<pre>#pragma omp parallel for lastprivate (x)</pre>
4.	for (i=0;i<100;i++)
5.	{ x=i; }
6.	printf("x=%d",x);
7.	

lastprivate-orig-no.c

https://github.com/LLNL/dataracebench

Evaluation Report

Tool-Compiler	Tests	Test Results		Metrics			Testing Error				Test Time		
Tool-Compiler												(hh:mm:ss)	
		TP	FN	ΤN	FP	Prec.	Recall	Acc.	CSF	CUN	RSF	RTO	
Archer1.0-Clang3.9.1	376	187	24	145	0	1.00	0.89	0.93	5	5	10	0	00:06:11
Archer2.0-Clang6.0.0	386	202	20	156	3	0.99	0.91	0.94	0	5	0	0	00:06:17
Inspector2008-Intel17.0.2	392	195	30	156	9	0.96	0.87	0.90	2	0	0	0	01:32:50
Inspector2008-Intel18.0.2	396	198	27	160	8	0.96	0.88	0.91	0	0	0	3	02:04:34
Inspector2018-Intel19.0.0	396	213	12	60	108	0.66	0.95	0.69	0	0	0	3	03:41:17
Inspector2018-Intel19.0.4	396	198	27	160	11	0.95	0.88	0.90	0	0	0	0	01:33:54
Inspector2019-Intel17.0.2	392	195	30	159	6	0.97	0.87	0.91	2	0	0	0	01:37:08
Inspector2019-Intel18.0.2	396	195	30	162	6	0.97	0.87	0.91	0	0	0	3	02:04:49
Inspector2019-Intel19.0.0	396	214	11	61	107	0.67	0.95	0.70	0	0	0	3	03:32:55
Inspector2019-Intel19.0.4	396	195	30	164	7	0.97	0.87	0.91	0	0	0	0	01:37:27
ROMP-Clang8.0.0	384	198	18	144	6	0.97	0.92	0.93	0	6	9	3	00:59:20
Tsan5.0.2-Clang5.0.2	386	192	30	153	3	0.98	0.86	0.91	0	5	0	3	00:36:28
Tsan6.0.1-Clang6.0.1	386	195	27	156	3	0.98	0.88	0.92	0	5	0	0	00:07:34
Tsan7.1.0-Clang7.1.0	386	193	29	154	5	0.97	0.87	0.91	0	5	0	0	00:07:19
Tsan8.0.1-Clang8.0.1	384	184	38	152	4	0.98	0.83	0.89	0	6	0	0	00:07:03

Compile-time seg. fault (CSF), Unsupported feature (CUN) Runtime seg. Fault (RSF), Runtime timeout (RTO)

Regression of Tools

	D							Т	ool-Compil	er						
	ĸ	Arch.1-	Arch.2-	Ins.18-	Ins.18-	Ins.18-	Ins.18-	Ins.19-	Ins.19-	Ins.19-	Ins.19-	ROMP-	Tsan5-	Tsan6-	Tsan7-	Tsan8-
		Cl.391	CI.600	ln.1702	In.1802	In.1900	In.1904	In.1702	In.1802	In.1900	ln.1904	CI.800	CI.502	Cl.601	Cl.710	Cl.801
5	Y	\checkmark	\checkmark	×	×	\checkmark	✓/X	X	×	<i>✓</i>	X	<i>✓</i>	\checkmark		 Image: A start of the start of	×
6	Y	\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	✓/X	✓/X	✓/X	X
7	Y	X	X	×	X	<i>✓</i>	X	X	X		X	X	X	X	X	X
8	Y	X	X	×	X	\checkmark	X	X	X		X	X	X	X	X	X
13	Y		X	X	V/X	X	✓/X	X	X	✓/X	X	<i>✓</i>	✓/X		✓/X	X
23	Y	✓/X	<i>✓</i>		<i>✓</i>	X	X	×	X	X						
24	Ý	X	X	×	X	×	X	X	X	X	X	X	X	×	X	X
25	Y	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
27	Y	X	X		<i>✓</i>			<i>✓</i>				<i>✓</i>	<i>✓</i>			
29	Y	<i>✓</i>	<i>✓</i>	✓/X	<i>✓</i>	<i>✓</i>		<i>✓</i>			<i>✓</i>	<i>✓</i>	✓			
34	Y		<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>		<i>✓</i>			<i>✓</i>	<i>✓</i>	✓ / X	V/X	V/X	<i>✓</i>
37	Y	RSF	<i>✓</i>	<i>✓</i>		<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>			<i>✓</i>
39	Y	<i>✓</i>	<i>✓</i>	X	✓/X	<i>✓</i>	X	X	×	<i>✓</i>	X	<i>✓</i>				
40	Y	<i>✓</i>	<i>✓</i>	✓/X	X	<i>✓</i>	✓/X	X	X	<i>✓</i>	X	<i>✓</i>	<u> </u>	V/X	V/X	✓/X
41	IN N	<i>✓</i>	<i>✓</i>	<i>✓</i>		X	<i>✓</i>	<i>✓</i>		X	<i>✓</i>	<i>✓</i>	<i>✓</i>			
42	IN N	<i>✓</i>	<i>✓</i>	<i>✓</i>		<u>×</u>	<i>✓</i>	<i>✓</i>		×	<i>✓</i>	v	<i>✓</i>			<i>✓</i>
43	IN N	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<u>×</u>	<i>✓</i>	<i>✓</i>		×	<i>✓</i>	<i>✓</i>	<i>✓</i>			<i>✓</i>
44	IN N	<i>✓</i>	<i>✓</i>	<i>✓</i>	<i>✓</i>	<u> </u>	<i></i>	<i>v</i>		<u> </u>	<i></i>	v	<i>✓</i>		<i>v</i>	<i>✓</i>
45	IN N	~		<i>✓</i>	<i>✓</i>	<u> </u>	<i></i>	<i>✓</i>		×	<i>✓</i>	<i>✓</i>	<i>✓</i>		<i>v</i>	
40		~	V	<i>v</i>	<i>v</i>	<u>^</u>	<i>v</i>	<i>v</i>		<u>^</u>	<i>v</i>	~	<i>v</i>		<i>v</i>	
47		V	V	v	V	~	V	V	v v		V		v (v	v (V
40	N	V	v	v	V	<u>^</u>	• •	V	V	^ X	V	·	×	v	· ·	V
49 50		v	v	• •	v	<u>^</u>	• •	v	v		• •	•	•	v	•	v
50	N	• •	•	•		×				r X	• •	•	•			
52	N	RSE	v	•		×		v		×	• •	•	• •			
54	N		•	•		×		•		×	• •	•				
55	N					×		•		×	• •	•				
56	N					x				X		·				
57	N					x				X		·				
59	N					x				X						
60	N					X				X						
61	N			· ·		X				X						
<u> </u>																

IDs not shown are benchmarks that are correctly evaluated with every tool.

Tools as Services to Reduce Human Costs and to allow more user context

RaceDetectionService: A Cloud-Based Metaservice for Detecting Data Races

Data Race Detection Service: RESTful API and JSON

HTTP Method	URL	Parameters	Description
GET	/RDS	N/A	List available race detection services' IDs, such as meta, micro-archer, micro-romp, etc.
POST	/RDS/service-id	SyncFlag, file, options	Send a file to a race detection service specified by its id, with extra options. The service will finish all the work and return a report if the synchronous flag is set to true. Otherwise, the service will immediately return a request ID and a key to authenticate possible HTTP DELETE requests. The actual race detection work will be executed in background.
GET	/requests	N/A	List all requests submitted to all services
GET	/requests/request-id	N/A	Check the status of a specific request, return a status of nonexist, finished, pending, running.
DELETE	/requests/request-id	key	Cancel an ongoing request, return a status of nonexist, success or failure.

"program": "a.out", 2 3 "data_races": [4 5 "read": { "location": ["file1.c",64,12], 6 "symbol": "A[i]" 8 }, 9 "write": { "location": ["file1.c",64,11], "symbol": "A[i]" 12 }, 13 "microservices": [14 {"Archer": true}, {"ROMP" : true}, 16 {"ThreadSanitizer": true}, {"Inspector": false} 19 }, "read": { "location": ["file2.c",132,7], "symbol": "b" }, "write": { "location": ["file2.c",246,31], "symbol": "b" }, "microservices": [{"Archer": true}, {"ROMP" : false}, 32 {"ThreadSanitizer": true}, 33 {"Inspector": true}], "raw_output": [{"Archer": "shorturl.at/uzJR7"}, {"ROMP" : "shorturl.at/enwH4"}, {"ThreadSanitizer": "shorturl.at/ot067"}, {"Inspector": "shorturl.at/dH389"} 42 1, "aggregate_policy": "Union" 44

1

7

10

11

15

17

18

20 21

22

23

24

25

26

27

28

29

30 31

34

35

36

37

38

39

40 41

43

Preliminary results of RDS

Tool	Aggregate Policy	TP	FP	TN	FN	Recall	Specificity	Precision	Accuracy	Adjusted F1
Intel Inspector		51	30	27	8	0.864	0.474	0.629	0.672	0.729
ThreadSanitizer	Union	56	31	26	3	0.949	0.456	0.644	0.707	0.767
Archer	Chion	51	3	50	7	0.879	0.943	0.944	0.910	0.872
ROMP		51	1	56	8	0.864	0.982	0.981	0.922	0.919
	Union	57	53	4	2	0.967	0.070	0.518	0.526	0.675
	Intersection	45	0	57	14	0.763	1.0	1.0	0.879	0.865
	Random	53	8	49	6	0.898	0.860	0.869	0.860	0.869
RDS	Majority (Positive tie breaker)	56	18	39	3	0.949	0.684	0.757	0.819	0.842
	Majority (Negative tie breaker)	53	3	54	6	0.898	0.947	0.946	0.922	0.922
	Weighted Vote	53	3	54	6	0.898	0.947	0.946	0.922	0.922
	Directive-Specific Weighted Vote	55	2	55	4	0.932	0.965	0.965	0.948	0.948

Automatic Online Training: FreeCompilerCamp.org

Problem:

- Many tools requested by app teams
- But only limited FTEs available

Solution: automatic training and certifying developers

- Modern Learning Management
 Systems (LMS) + Adaptive
 Learning/Assessement
- FreeCodeComp \rightarrow FreeCompilerComp
- Interactive cloud-based playground for learners: Play-with-Docker

Pain Point	Description	Solution				
Accessible	Paperwork to get accounts on suitable machines	Online sandbox terminal open to anyone				
Installation Many software packages are needed		Docker images				
Effectiveness Traditional text tutorials are not effective		Learning by doing, testing, certification				
Content	No single person/group knows all details of compiler development	Self-made tutorials + crowd-sourcing to accept external contributions				
Design trade-offs	One compiler cannot demonstrate all options	Hosting tutorials for multiple compilers				
Costs Hosting websites with containers costs money		Open-source, self-deployable framework				
Security Online websites have inherent risks		Containers + VM + AWS				

Challenges and Solutions

Compilers : Parsing -> AST/IR -> Traversal (analysis) -> Transform (optimization) -> Runtime

FreeCompilerCamp Design

User interface

Free Compiler Camp Classroom	
ssentially, we can see the following content:	 If the commandline doesn't appear in the terminal, make sure popups are enabled or try resizing the browser window. If you are behind firewall, plet open the firewall of your computer. Time remaining in this session : 1h 58m 2019-09-26 13:32:51 (31.3 MB/s) - 'input build Function Calls.h' saved [123/123]
1 // goal 1. generate	
// foo(p_sum);	<pre>freecc@node1:astInterfaceTests\$ cat inputbuildFunctionCalls.C</pre>
// foo(0.5);	/// goal 1. generate
// after inserting its header	// nool 2. generate
// hew persenter is used	// foo(0.5);
void foo(int x);	// after inserting its header
) int main (void)	// how parameter is used
tint p sum=0:	void foo(int x);
return p_sum;	int main (void)
}	
	int p_sum=0;
Run sample program to insert a function call	return p_sum;
. Null sample program to insert a function can	}
r building the demo, there is executable file named buildFunctionCalls under the current directory:	U function Canadad and Table State of the Muld Function Colle
	huildEunctionCalls
DUITOFUNCTIONCAILS	freec@node1:astInterfaceTests\$./buildFunctionCalls -c inputbuildFunctionCalls.C
Ily, run the demo tool to insert the function call to the sample input code:	freecc@node1:astInterfaceTests\$ cat rose_inputbuildFunctionCalls.C
	/// goal 1. generate
<pre>buildFunctionCalls -c inputbuildFunctionCalls.C</pre>	<pre>// foo(p_sum);</pre>
	// goal 2. generate
generated source code suit has the same name but wint a prenx rose It's unparsed from updated AST. Be checking the new source code, it	// foo(0.5);
	// alter inserting its header
t rose_inputbuildFunctionCalls.C	#include "inputbuildFunctionCalls.h"
	void foo(int x);
ine 13 and 14 verified that new function calls have been added to the AST.	
	int main()
) int main()	int p cur = 0
$1 \{$	$f_{00}(p s_{im})$:
2 Int p_sum = 0, 3 foo(p_sum);	bar(0.500000);
4 bar(0.500000);	return p_sum;
5 return p_sum;	

Takeaway Messages

ROSE: A source-to-source compiler framework for building tools for national security applications

- tools for source code and binary: inliner, outliner, autopar, move tool, loop processor ...
- <u>http://roseCompiler.org/</u>
- **Tool Development**
 - Regression tests to reflect what users want (positive tests) and don't want (negative tests)
 - Standard metrics to communicate incremental progress with sponsors and users
 - Precision, Recall, Accuracy
 - Commenting on issues of apps == commenting on issues of children in front of their parents!

Success(HPC)=f (Flops, Watt) - Highly Painful Computing for people

- Let's refine the metric to include human factors together and make it Highly **Pleasant Computing**
- Doing my part to make HPC Highly Pleasant Computing
 - Benchmarks: people love and hate benchmarks
 - Best qualified people may not want to develop/release the best benchmarks • for their work
 - Microservice design, docker, cloud,
 - Online learning/certifying frameworks,

Center for Applied Scientific Computing

Sponsored by DOE Office of Cybersecurity, Energy Security, and Emergency Response, Department of Defense, and LLNL.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.