
06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 1

Compiler-assisted type-safe
checkpointing

Compiler-assisted Correctness Checking and Performance Optimization for HPC

June 25th, 2020, Virtual Conference

Jan-Patrick Lehr @jplehr

jan-patrick.lehr@tu-darmstadt.de

Alexander Hück alexander.hueck@tu-darmstadt.de
Moritz F. Fischer moritz_friedrich.fischer@stud.tu-darmstadt.de
Christian Bischof christian.bischof@tu-darmstadt.de

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 2

Motivation

 Many checkpoint/restart (CPR) libraries offer (type) unsafe, low-level APIs:
 memory region ID
 pointer to start of memory region
 number of elements
 size (in bytes) per element

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 3

Motivation

 Errors that confuse number of elements or element size are easily made
 Result in wrong number of bytes to be captured by CPR library

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 4

Motivation

Allocation holding 3 integer values (assuming 4 byte per integer)

pi->

Checkpoint: Illegally reads behind allocation end (crash or silent error)
Restart: Illegally writes behind allocation end (crash or silent error)

pi->

Checkpointing too many elements

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 5

Motivation

Allocation holding 3 integer values (assuming 4 byte per integer)

pi->

Checkpoint: Data is not captured (silent error)
Restart: Memory is not fully initialized (crash or bogus results)

pi->

Checkpointing too few elements

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 6

Error Types
 Element Count Error

Developer specifies the number of elements in the allocation erroneously

 Data Type Error
Developer specifies the type of the elements erroneously

 Change Allocation Before Checkpoint
The already registered allocation is changed, such that either an Element Count
Error or a Data Type Error are present

 Can be detected automatically using allocation tracking

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 7

Approach

 Implement a mechanism to state requirements on memory regions
 For each CPR-registered memory region developer states the requirements
 At runtime: check the given requirements for validity
 On a successful check: continue execution with checkpoint
 On a failed check: abort execution with error message

 Similar to information used in MPI Type checking [1]
 → Use TypeART to implement approach

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 8

TypeART

 TypeART is a memory allocation tracking and sanitizer built on LLVM
 Uses combination of compile-time analysis and instrumentation

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 9

TypeART

 Adds instrumentation to all relevant memory allocations, e.g., heap allocation
 Generates type ids for each type in the program

 Allows to query the TypeART runtime with a memory address for:
 Number of elements
 Type of elements

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 10

TyCart

 Provides a CPR-library interface, similar to VeloC [2] and FTI [3]
 Implements runtime checks for specified type and number of elements

 Uses TypeART as a service to provide required runtime type information

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 11

TyCart Interface

 TY_protect
 memory id
 pointer to start address of memory region
 number of elements in memory region
 type of an element in memory region

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 12

Type Assert

 Pointer of requested type is introduced and passed to stub function
 Stub function is replaced in LLVM compiler pass with call to TyCart runtime library

function

#define TY_protect(id, pointer, count, type)
{
 type* __ptr_ = NULL;
 __tycart_assert_stub((void*)pointer, __ptr_, count, id);
}

void __tycart_assert(int id, void* addr, size_t count,
 size_t typeSize, int typeId)

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 13

User-defined Types

struct Vec v

int v.size

 → Start address of v equals member size, i.e., &v == &v.size

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 14

User-defined Types

struct Vec v

int v.size

assert weak (addr, type):
 if addr is not type:
 if type is user defined:
 subtype = get member type (type)
 return assert weak (addr, subtype)
 return assert(addr, type)

assert 1 integer at address

1) assert fails (int != Vec)
2) get layout from Vec
3) assert 1 int with v.size
4) assert succeeds

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 15

Evaluation
Experiments conducted on Lichtenberg high-performance computer (TU Darmstadt)
 Intel Haswell E5-2680v3 (fixed @ 2.5GHz), 64 GB main memory
 Results denote median over 10 consecutive runs

 standard deviation is 3% or less except FTI+TyCart in driven cavity

 driven cavity: C++ adoption from MINPACK-2 collection
 eos-mbpt: C++ (astro)physics simulation [4]
 game of life: C++ implementation of Conway’s game of life
 heatdis: C example from FTI repository (MPI-parallel)
 LULESH: C++ mini app for shock hydro dynamics (MPI-parallel)

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 16

Evaluation

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 17

Evaluation

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 18

Evaluation

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 19

Evaluation

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 20

Discussion
 Allows to effectively check validity of stated type requirements for a CPR call

 Runtime and memory overhead within reasonable margins
 Works with C and C++

 Currently, does not support incremental checkpointing
 Prevents partial initialization of memory

 Currently, handling of user-defined types offers limited configurability for resolution
 Introduce resolution-level to specify particular occurrence of sub type

 Restart not handled explicitly
 → potentially exploit meta data in CPR files to also check at application restart

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 21

Conclusion
 TyCart is a tool for type-safe checkpoint/restart built on top of TypeART

 Implementation exists for the FTI and VeloC
 Implements type asserts for C and C++

 Specify requirements on memory regions, i.e., type and number of elements
 Introduces reasonable runtime and memory overhead

 Improving compile-time filtering should reduce overheads further

Available under BSD 3-clause license (branch feat/tycart)

github.com/tudasc/TypeART

06/25/2020 | Scientific Computing | JP Lehr | C3PO'20 | 22

References
 [1] A. Hück et al., “Compiler-aided Type Tracking for Correctness Checking of MPI Applications”, 2018

IEEE/ACM 2nd International Workshop on Software Correctness for HPC Applications (Correctness),
Dallas, TX, USA, 2018, pp. 51-58. doi: 10.1109/Correctness.2018.00011.

 [2] B. Nicolae et al., “VeloC: Towards High Performance Adaptive Asynchronous Checkpointing at Large
Scale”, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro,
Brazil, 2019, pp. 911-920. doi: 10.1109/IPDPS.2019.00099.

 [3] Leonardo Bautista-Gomez et al., “FTI: high performance fault tolerance interface for hybrid systems”,
2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC
’11). Association for Computing Machinery, New York, NY, USA, Article 32, 1–32. doi:
10.1145/2063384.2063427.

 [4] C. Drischler et al., “Chiral interactions up to next-to-next-to-next-to-leading order and nuclear
saturation”, Physical Review Letters 122, 042501 (Jan 2019). doi: 10.1103/PhysRevLett.122.042501.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

